organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-Isopropyl-4-tosylpiperazin-1-ium trifluoroacetate

Jiang-Sheng Li,^a* Dao-Wu Yang^a and Wei-Dong Liu^b

^aSchool of Chemical and Environmental Engineering, Changsha University of Science and Technology, Changsha 410076, People's Republic of China, and ^bHunan Research Institute of Chemical Industry, Changsha 410007, People's Republic of China

Correspondence e-mail: jansenlee1103@yahoo.com.cn

Received 20 November 2007; accepted 21 November 2007

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.004 Å; disorder in solvent or counterion; R factor = 0.054; wR factor = 0.124; data-to-parameter ratio = 11.9.

In the title compound, $C_{14}H_{23}N_2O_2S^+\cdot C_2F_3O_2^-$, the piperazine ring adopts a chair conformation. The crystal packing is stabilized by $C-H\cdots O$ and $N-H\cdots O$ hydrogen bonds between the cation and anion. The F atoms are disordered over two positions; the site occupancy factors are 0.55 (2) and 0.45 (2).

Related literature

For related literature on benzenesulfonamides, see: Yu et al. (2007); Xing et al. (2006, 2005).

Experimental

Crystal data $C_{14}H_{23}N_2O_2S^+ \cdot C_2F_3O_2^ M_r = 396.42$ Monoclinic, $P2_1/n$

a = 11.659 (2) Åb = 8.4274 (17) Åc = 19.404 (4) Å $\beta = 105.87 (3)^{\circ}$ $V = 1833.8 (6) Å^{3}$ Z = 4Mo K α radiation

Data collection

Rigaku Saturn diffractometer
Absorption correction: multi-scan
(CrystalClear;
Rigaku/MSC, 2005)
$T_{\min} = 0.977, T_{\max} = 0.995$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.054 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.124 & \text{independent and constrained} \\ S &= 1.03 & \text{refinement} \\ 3226 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.40 \text{ e } \text{ Å}^{-3} \\ 270 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.28 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2A\cdots O4^{i}$	0.902 (11)	1.828 (12)	2.724 (3)	172 (3)
$C9-H9A\cdots O2^{ii}$	0.97	2.52	3.405 (4)	151
C10−H10A···O4 ⁱⁱ	0.97	2.45	3.357 (4)	155
$C2 - H2 \cdots O3^{iii}$	0.93	2.58	3.225 (4)	127

 $\mu = 0.23 \text{ mm}^{-1}$

T = 113 (2) K

 $R_{\rm int} = 0.072$

 $0.10 \times 0.08 \times 0.02 \text{ mm}$

10902 measured reflections

3226 independent reflections 2517 reflections with $I > 2\sigma(I)$

Symmetry codes: (i) x + 1, y, z; (ii) -x + 1, -y, -z; (iii) x + 1, y - 1, z.

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *CrystalStructure* (Rigaku/MSC, 2005).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2629).

References

Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA. Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Xing, J.-D., Bai, G.-Y., Zeng, T. & Li, J.-S. (2006). *Acta Cryst.* E62, 079–080. Xing, J.-D. & Zeng, T. (2005). *Acta Cryst.* E61, 04318–04319.

Yu, H.-J. & Li, J.-S. (2007). Acta Cryst. E63, 03766.

Acta Cryst. (2008). E64, o22 [doi:10.1107/S1600536807061570]

1-Isopropyl-4-tosylpiperazin-1-ium trifluoroacetate

J.-S. Li, D.-W. Yang and W.-D. Liu

Comment

In the title compound (Fig. 1) both N atoms have a pyramidal arrangement, but the pyramid of the amide is somewhat shallower than that of the protonated N. The protonated piperazin ring adopts a chair conformation.

The crystal packing is stabilized by C—H···O and N—H···O hydrogen bonds (Table 1) between the cation and anion. Weak intermolecular C—H···O hydrogen bonds involving an S=O group as acceptor play an important role in the molecular packing.

Experimental

A solution of 4-methylbenzenesulfonyl chloride (3.28 g, 17 mmol) in CH₂Cl₂ was added dropwise to a mixture of 1-isopropylpiperazine (2.23 g, 82%, 0.14 mmol) and sodium biscarbonate (3.36 g, 40 mmol) in CH₂Cl₂ (30 ml) at room temperature with stirring. After stirring for 4 h followed by filtration, the organic filtrate was rotoevaporated under vacuum. The resulting solid, in a yield of 53.8%, was purified by recrystallization from methanol. Crystals in the form of colourless blocks were grown by evaporation of a trifluoroacetic solution.

Refinement

The N-bound H atoms were refined freely with the restraint of 0.90 (1) Å, while the other H atoms were positioned geometrically (C—H = 0.93, 0.96 and 0.97 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$. The three F atoms are disordered over two site occupancy of 0.55 (2): 0.45 (2). The C—F distances were restrained to 1.36 (1) Å and their displacement parameters were restrained to be isotropic by means of the instruction ISOR (tolerance 0.01) in *SHELXL*.

Figures

Fig. 1. The molecular structure of (I) with the atom-numbering scheme and 30% probability displacement ellipsoids. Only one component of the disordered CF_3 group is shown.

1-Isopropyl-4-tosylpiperazin-1-ium trifluoroacetate

Crystal data

 $C_{14}H_{23}N_2O_2S^+ \cdot C_2F_3O_2^ M_r = 396.42$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 11.659 (2) Å *b* = 8.4274 (17) Å c = 19.404 (4) Å $\beta = 105.87 (3)^{\circ}$ V = 1833.8 (6) Å³ Z = 4

Data collection

Rigaku Saturn diffractometer	3226 independent reflections
Radiation source: rotating anode	2517 reflections with $I > 2\sigma(I)$
Monochromator: confocal	$R_{\rm int} = 0.072$
T = 113(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ω scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005)	$h = -13 \rightarrow 9$
$T_{\min} = 0.977, \ T_{\max} = 0.995$	$k = -9 \rightarrow 10$
10902 measured reflections	<i>l</i> = −23→23

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.054$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.124$	$w = 1/[\sigma^2(F_o^2) + (0.0512P)^2 + 0.9104P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} = 0.003$
3226 reflections	$\Delta \rho_{max} = 0.40 \text{ e } \text{\AA}^{-3}$
270 parameters	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$
43 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

sup-2

 $F_{000} = 832$

 $D_{\rm x} = 1.436 {\rm ~Mg} {\rm ~m}^{-3}$

Cell parameters from 3880 reflections

Mo Kα radiation

 $\lambda = 0.71073 \text{ \AA}$

 $\theta = 2.2 - 27.9^{\circ}$

 $\mu = 0.23 \text{ mm}^{-1}$ *T* = 113 (2) K

Block, colorless $0.10\times0.08\times0.02~mm$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$ Occ. (<1) \boldsymbol{Z} х y **S**1 0.0214(2)0.63629(6) -0.19035(8)0.09809(4)F1 0.0952 (9) 0.0965 (13) 0.2419 (6) 0.078 (3) 0.55(2) F2 0.1367 (11) 0.55(2) 0.3388 (12) 0.2544 (5) 0.077 (3) F3 0.2151 (6) 0.1905 (18) 0.1909(5)0.070(3)0.55(2)F1' 0.45(2)0.0745 (9) 0.175(2) 0.2595 (5) 0.083(4)F2' 0.1771 (11) 0.3557 (10) 0.2275(9)0.077(4)0.45(2)F3' 0.2000 (6) 0.45(2)0.1949 (11) 0.1212(15) 0.066(4)01 0.63011 (18) -0.3355(2)0.05863 (10) 0.0265 (5) O2 0.53262 (17) -0.1320(2)0.11580 (10) 0.0275(5)O3 -0.0548(2)0.3661 (3) 0.14312 (12) 0.0410(6) 04 0.00768 (17) 0.1625 (2) 0.08810 (10) 0.0277 (5) N1 -0.0517(3)0.0197 (5) 0.6753(2)0.04892 (11) N2 0.7924 (2) 0.1936 (3) -0.01082(12)0.0183 (5) C1 0.17719 (14) 0.0195 (6) 0.7539(2) -0.2013(3)C2 0.8553 (3) -0.2897(3)0.17916 (14) 0.0211 (6) H2 0.8588 -0.35170.1402 0.025* C3 0.9508 (3) -0.2842(4)0.23978 (15) 0.0254 (7) H3 1.0186 -0.34400.2415 0.030* C4 0.9472 (3) -0.1907(3)0.29824 (14) 0.0248 (7) C5 0.8443 (3) -0.1060 (4) 0.29589 (15) 0.0281 (7) H5 0.8406 -0.04470.3351 0.034* 0.7468 (3) C6 -0.1113 (3) 0.23611 (15) 0.0258 (7) H6 0.6776 -0.05560.2353 0.031* C7 1.0535 (3) -0.1813(4)0.36274 (16) 0.0373(8)H7A 1.0736 -0.28580.3820 0.056* H7B 1.0348 0.3984 0.056* -0.1150H7C 1.1199 -0.13710.3490 0.056* C8 0.6947 (3) 0.1074 (3) 0.08214 (14) 0.0222 (6) H8A 0.7690 0.1081 0.1200 0.027* H8B 0.6305 0.1321 0.1033 0.027* C9 0.6995 (3) 0.2314 (3) 0.02688 (14) 0.0215 (7) H9A 0.6221 0.2383 -0.00800.026* H9B 0.7169 0.3339 0.0501 0.026*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C10	0.7722 (2)	0.0296 (3)	-0.04174 (14)	0.0201 (6)
H10A	0.8350	0.0033	-0.0639	0.024*
H10B	0.6967	0.0261	-0.0785	0.024*
C11	0.7712 (3)	-0.0907 (3)	0.01589 (14)	0.0213 (6)
H11A	0.7585	-0.1962	-0.0049	0.026*
H11B	0.8474	-0.0898	0.0520	0.026*
C12	0.7963 (3)	0.3177 (3)	-0.06701 (14)	0.0221 (6)
H12	0.7191	0.3189	-0.1033	0.026*
C13	0.8190 (3)	0.4804 (3)	-0.03294 (16)	0.0271 (7)
H13A	0.8896	0.4772	0.0066	0.041*
H13B	0.7522	0.5112	-0.0161	0.041*
H13C	0.8296	0.5558	-0.0677	0.041*
C14	0.8927 (3)	0.2765 (4)	-0.10319 (17)	0.0337 (8)
H14A	0.8996	0.3606	-0.1352	0.051*
H14B	0.8720	0.1797	-0.1298	0.051*
H14C	0.9675	0.2631	-0.0675	0.051*
C15	0.0119 (3)	0.2552 (3)	0.13959 (15)	0.0241 (7)
C16	0.1144 (3)	0.2243 (4)	0.20678 (16)	0.0313 (8)
H2A	0.8653 (14)	0.193 (4)	0.0208 (13)	0.031 (9)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0190 (4)	0.0236 (4)	0.0199 (4)	-0.0031 (3)	0.0026 (3)	0.0009 (3)
F1	0.079 (5)	0.074 (5)	0.064 (4)	-0.015 (3)	-0.010 (3)	0.047 (4)
F2	0.086 (5)	0.073 (5)	0.046 (4)	0.026 (4)	-0.027 (3)	-0.032 (3)
F3	0.028 (3)	0.129 (7)	0.050 (3)	0.014 (4)	0.005 (2)	0.008 (5)
F1'	0.077 (5)	0.139 (9)	0.036 (4)	0.013 (6)	0.019 (3)	0.036 (5)
F2'	0.063 (5)	0.046 (4)	0.085 (7)	-0.023 (3)	-0.040 (4)	-0.008 (4)
F3'	0.062 (6)	0.063 (6)	0.052 (5)	0.044 (4)	-0.021 (4)	-0.016 (4)
01	0.0317 (13)	0.0237 (11)	0.0212 (10)	-0.0075 (9)	0.0025 (9)	-0.0013 (8)
O2	0.0180 (12)	0.0362 (13)	0.0290 (11)	0.0000 (9)	0.0075 (9)	0.0045 (9)
O3	0.0448 (15)	0.0332 (13)	0.0382 (13)	0.0159 (11)	0.0001 (11)	-0.0083 (11)
O4	0.0216 (12)	0.0312 (12)	0.0270 (11)	0.0039 (9)	0.0012 (9)	-0.0056 (9)
N1	0.0213 (14)	0.0194 (13)	0.0194 (12)	0.0001 (10)	0.0074 (10)	0.0004 (10)
N2	0.0172 (13)	0.0179 (12)	0.0191 (12)	0.0001 (10)	0.0037 (10)	-0.0019 (10)
C1	0.0223 (16)	0.0160 (14)	0.0187 (14)	-0.0008 (11)	0.0031 (12)	0.0019 (11)
C2	0.0250 (17)	0.0199 (15)	0.0186 (14)	-0.0006 (12)	0.0064 (12)	0.0019 (12)
C3	0.0217 (17)	0.0302 (17)	0.0258 (15)	0.0025 (13)	0.0091 (13)	0.0056 (13)
C4	0.0262 (18)	0.0242 (16)	0.0214 (15)	-0.0057 (13)	0.0021 (13)	0.0049 (12)
C5	0.037 (2)	0.0244 (17)	0.0201 (15)	0.0035 (13)	0.0032 (14)	0.0000 (12)
C6	0.0265 (18)	0.0259 (17)	0.0254 (15)	0.0063 (13)	0.0081 (13)	-0.0006 (13)
C7	0.031 (2)	0.046 (2)	0.0276 (17)	-0.0068 (15)	-0.0032 (14)	0.0033 (15)
C8	0.0233 (17)	0.0218 (15)	0.0235 (15)	0.0015 (12)	0.0098 (13)	-0.0025 (12)
С9	0.0202 (17)	0.0208 (15)	0.0249 (15)	0.0036 (12)	0.0085 (12)	-0.0041 (12)
C10	0.0204 (16)	0.0182 (15)	0.0215 (14)	0.0006 (11)	0.0054 (12)	-0.0039 (12)
C11	0.0231 (16)	0.0179 (15)	0.0220 (14)	0.0020 (11)	0.0046 (12)	-0.0017 (12)
C12	0.0234 (16)	0.0193 (15)	0.0221 (15)	0.0009 (12)	0.0038 (12)	0.0056 (12)

C13	0.0293 (18)	0.0233 (16)	0.0295 (16)	0.0040 (13)	0.0096 (13)	0.0055 (13)
C14	0.042 (2)	0.0283 (18)	0.0380 (18)	-0.0016 (14)	0.0228 (16)	0.0014 (14)
C15	0.0239 (18)	0.0234 (16)	0.0246 (15)	-0.0028 (12)	0.0058 (13)	0.0007 (13)
C16	0.032 (2)	0.0311 (19)	0.0285 (17)	-0.0004 (14)	0.0039 (15)	-0.0037 (14)
Geometric para	meters (Å °)					
Geometric puru	meiers (A,)					
S1—O2		1.431 (2)	C5—	C6	1.38	35 (4)
S1—O1		1.435 (2)	C5—	Н5	0.93	300
S1—N1		1.649 (2)	C6—	H6	0.93	300
S1—C1		1.758 (3)	C7—	H7A	0.90	500
F1—C16		1.326 (6)	C7—	H7B	0.90	500
F2—C16		1.311 (6)	C7—	H7C	0.90	500
F3—C16		1.323 (7)	C8—	C9	1.50)9 (4)
F1'—C16		1.302 (7)	C8—	H8A	0.9	700
F2'—C16		1.327 (7)	C8—.	H8B	0.9	700
F3'—C16		1.312 (7)	С9—	H9A	0.9	700
O3—C15		1.230 (4)	С9—	H9B	0.9	700
O4—C15		1.259 (3)	C10–	-C11	1.5	12 (4)
N1—C11		1.470 (4)	C10–	-H10A	0.9	700
N1—C8		1.478 (3)	C10–	-H10B	0.9	700
N2—C9		1.498 (3)	C11–	-H11A	0.9	700
N2—C10		1.499 (3)	CII-	-HIIB	0.9	/00
N2—C12		1.521 (3)	C12-	-C13	1.5	14 (4)
N2—H2A		0.902 (11)	C12-	-C14	1.5	19 (4)
CIC2		1.389 (4)	C12-	-H12	0.98	300
CI = C6		1.393 (4)	C13-	-H13A	0.90	500
$C_2 = C_3$		1.382 (4)	C13-	-H13B	0.90	500
C2—H2		0.9300	C13-	-H13C	0.90	500
$C_3 = C_4$		1.391 (4)	C14-	-H14A	0.90	500
C3—H3		0.9300	C14-	-H14B	0.90	500
C4—C3		1.380 (4)	C14	-H14C	0.90	300 21 (4)
C4—C7		1.505 (4)	015-	-010	1.5.)1 (4)
02—S1—O1		119.92 (12)	C11–	-C10—H10A	109	.5
02—S1—N1		106.25 (12)	N2—	CI0—HI0B	109	.5
OI—SI—NI		106.09 (11)	CII-	-CIO-HIOB	109	.5
02—SI—CI		108.45 (13)	HIUA	—C10—H10B	108	.1
OI—SI—CI		109.53 (12)	NI—		109	.5 (2)
NI—SI—CI		105.65 (12)	NI—	CII—HIIA	109	.8
CII—NI—C8		110.4 (2)	C10-	-CII—HIIA	109	.8
CII—NI—SI		117.15(18)	NI—	CII—HIIB	109	.8
$C_8 = N_1 = S_1$		115.10(17)	C10-	-CII—HIIB	109	.8
C9 - N2 - C10		109.7 (2)	HIIA G12	-CII-HIIB	108	.2
$C_{9} = N_{2} = C_{12}$		111.8(2)	C13-	-C12 $-C14$	110	.2 (2)
C10 $N2$ $U2$		112.3(2)	C13-	-C12 $N2$	110	.2 (2)
C_{3} N_{2} N_{2} N_{2} N_{2}		109.9 (19)	C14-	-C12 $-U12$ $-U12$	110	.2 (2)
C10— $IN2$ — $II2A$		107(2)	C13-	-C12 - C12	108	. /
C12— $IN2$ — $H2A$		100(2)	U14-	$-C_{12}$ $-T_{12}$	108	. /
-2		120.7 (3)	1N2	U12—1112	108	. /

C2-C1-S1	120.4 (2)	C12—C13—H13A	109.5
C6-C1-S1	118.7 (2)	C12—C13—H13B	109.5
C3—C2—C1	119.2 (3)	H13A—C13—H13B	109.5
С3—С2—Н2	120.4	C12—C13—H13C	109.5
С1—С2—Н2	120.4	H13A—C13—H13C	109.5
C2—C3—C4	121.0 (3)	H13B—C13—H13C	109.5
С2—С3—Н3	119.5	C12—C14—H14A	109.5
С4—С3—Н3	119.5	C12—C14—H14B	109.5
C5—C4—C3	118.9 (3)	H14A—C14—H14B	109.5
C5—C4—C7	120.6 (3)	C12—C14—H14C	109.5
C3—C4—C7	120.5 (3)	H14A—C14—H14C	109.5
C6—C5—C4	121.0 (3)	H14B—C14—H14C	109.5
С6—С5—Н5	119.5	O3—C15—O4	128.9 (3)
С4—С5—Н5	119.5	O3—C15—C16	116.1 (3)
C5—C6—C1	119.1 (3)	O4—C15—C16	115.0 (3)
С5—С6—Н6	120.5	F1'—C16—F2	74.1 (6)
С1—С6—Н6	120.5	F1'—C16—F3'	106.7 (6)
С4—С7—Н7А	109.5	F2	123.3 (6)
С4—С7—Н7В	109.5	F1'—C16—F3	130.1 (6)
H7A—C7—H7B	109.5	F2—C16—F3	107.7 (6)
С4—С7—Н7С	109.5	F3'—C16—F3	29.5 (5)
Н7А—С7—Н7С	109.5	F1'—C16—F1	35.9 (5)
Н7В—С7—Н7С	109.5	F2—C16—F1	105.3 (5)
N1-C8-C9	110.5 (2)	F3'—C16—F1	75.0 (6)
N1—C8—H8A	109.6	F3—C16—F1	103.4 (5)
С9—С8—Н8А	109.6	F1'—C16—F2'	108.3 (6)
N1—C8—H8B	109.6	F2—C16—F2'	35.5 (5)
С9—С8—Н8В	109.6	F3'—C16—F2'	103.5 (7)
H8A—C8—H8B	108.1	F3—C16—F2'	78.5 (6)
N2—C9—C8	111.8 (2)	F1—C16—F2'	132.7 (6)
N2—C9—H9A	109.3	F1'-C16-C15	111.1 (5)
С8—С9—Н9А	109.3	F2—C16—C15	115.6 (4)
N2—C9—H9B	109.3	F3'—C16—C15	116.1 (5)
С8—С9—Н9В	109.3	F3—C16—C15	112.0 (5)
Н9А—С9—Н9В	107.9	F1—C16—C15	112.0 (4)
N2-C10-C11	110.8 (2)	F2'-C16-C15	110.6 (5)
N2-C10-H10A	109.5		
02—S1—N1—C11	-172 47 (19)	C10-N2-C9-C8	54 2 (3)
01 - S1 - N1 - C11	-43.8(2)	$C_{12} = N_{2} = C_{9} = C_{8}$	1794(2)
C1 = S1 = N1 = C11	72.4 (2)	N1 - C8 - C9 - N2	-55.7(3)
02-S1-N1-C8	55 2 (2)	C9-N2-C10-C11	-561(3)
01 - S1 - N1 - C8	-17613(19)	$C_{12} = N_{2} = C_{10} = C_{11}$	178 9 (2)
C1 - S1 - N1 - C8	-59.9 (2)	C8—N1—C11—C10	-60.6(3)
02-S1-C1-C2	163 9 (2)	S1-N1-C11-C10	164 97 (18)
01—S1—C1—C2	31.4 (3)	N2—C10—C11—N1	59.7 (3)
N1—S1—C1—C2	-82.5 (2)	C9—N2—C12—C13	57.2 (3)
02—S1—C1—C6	-20.4(3)	C10—N2—C12—C13	-179.0(2)
01—S1—C1—C6	-152.9 (2)	C9—N2—C12—C14	179.1 (2)
N1—S1—C1—C6	93.2 (2)	C10—N2—C12—C14	-57.1 (3)
	- · 、 、 /		(-)

C6—C1—C2—C3	-1.7 (4)	O3-C15-C16-F1'	67.0 (11)
S1—C1—C2—C3	173.9 (2)	O4-C15-C16-F1'	-112.9 (10)
C1—C2—C3—C4	-0.6 (4)	O3-C15-C16-F2	-14.9 (9)
C2—C3—C4—C5	2.0 (4)	O4-C15-C16-F2	165.2 (9)
C2—C3—C4—C7	-177.8 (3)	O3—C15—C16—F3'	-170.9 (9)
C3—C4—C5—C6	-1.1 (4)	O4—C15—C16—F3'	9.3 (10)
C7—C4—C5—C6	178.7 (3)	O3-C15-C16-F3	-138.8 (8)
C4—C5—C6—C1	-1.1 (4)	O4-C15-C16-F3	41.4 (8)
C2—C1—C6—C5	2.5 (4)	O3-C15-C16-F1	105.7 (9)
S1—C1—C6—C5	-173.2 (2)	O4-C15-C16-F1	-74.2 (9)
C11—N1—C8—C9	58.7 (3)	O3—C15—C16—F2'	-53.3 (11)
S1—N1—C8—C9	-165.91 (18)	O4—C15—C16—F2'	126.8 (10)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N2—H2A···O4 ⁱ	0.902 (11)	1.828 (12)	2.724 (3)	172 (3)
C9—H9A···O2 ⁱⁱ	0.97	2.52	3.405 (4)	151
C10—H10A…O4 ⁱⁱ	0.97	2.45	3.357 (4)	155
C2—H2···O3 ⁱⁱⁱ	0.93	2.58	3.225 (4)	127
$(1, \dots, (1, \dots, $	() 1 1			

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) -*x*+1, -*y*, -*z*; (iii) *x*+1, *y*-1, *z*.

